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Computation of 2D Navier–Stokes equations with moving
interfaces by using GMRES

Jin Wang∗,†
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SUMMARY

In this paper, we present a novel numerical algorithm to compute two-dimensional (2D) viscous interfacial
flows governed by the incompressible Navier–Stokes equations together with interfacial conditions. The
essential idea is to use the generalized minimum residual (GMRES) method to efficiently solve the large
algebraic system resulting from the temporal and spatial discretizations. With this algorithm, moving
interfaces can be captured with high accuracy and viscous effects on wave motion can be studied in detail.
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1. INTRODUCTION

Viscous flows with interfaces occur in a wide variety of physical phenomena. Mathematically,
the motion is governed by the incompressible Navier–Stokes equations together with interfacial
conditions. Although much success has been achieved on the numerical study of such problems
[1–4], understanding of the fundamental physics involved, in particular, viscous effects, remains
limited due to the non-linear phenomena implicit in both the fluid flows and interfacial wave
evolution. The challenge in studying these effects numerically is the design of an algorithm which
captures the evolving interface with high accuracy and without introducing numerical smoothing.
Current methods, such as volume-of-fluid [5, 6] or level set [7–9], succeed primarily for motions
where the fine-scale surface details are not important [10, 11]. Boundary integral methods [12, 13],
on the other hand, can only be applied to inviscid flows. Therefore, these methods are not suitable
for an accurate study of viscous effects on interfacial motion.
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In this paper, we present a new approach to simulate two-dimensional (2D) viscous interfacial
flows which ensures a highly accurate representation for the interface. Clearly, only a finite region of
the fluid surface can be studied and it is reasonable to assume the region is periodic in the horizontal
direction. It is then natural to use a spectral representation for the surface and flow variables in the
horizontal coordinate. As a result, the flow equations become a family of equations in time and the
vertical coordinate. Good resolution near the surface can be achieved by introducing a new vertical
coordinate whose origin lies on the surface. Then, we perform the temporal and spatial (vertical) dis-
cretizations to the full mapped equations, which results in a large and non-symmetric linear system
with variable coefficients. The generalized minimum residual (GMRES) algorithm is applied to find
the solutions.

The GMRES method is an efficient tool to solve large and non-symmetric linear systems. This
method was proposed by Saad and Schultz in 1986 [14] and its basic idea is as follows. Suppose
we want to solve a linear system

Ax = b (1)

where A is a non-singular n × n complex matrix and b a vector of length n. Let x0 be an initial
guess for this linear system and r0 = b− Ax0 be its corresponding residual. The GMRES algorithm
builds an approximation to the solution of (1) in the form

xm = x0 + Qmy (2)

Here Qm is an orthonormal basis for the Krylov subspace

K(A, r0,m) = span{r0, Ar0, . . . , Am−1r0} (3)

and is constructed via the Arnoldi process [15]. The vector y in Equation (2) is determined so
that the L2-norm of the residual rm = b − Axm is minimal over K(A, r0, m). Usually one can
use the Givens rotations [15] to solve for y. In practical application, GMRES requires some
preconditioning to reduce the number of iterations and improve the efficiency of the algorithm
[16]. We will describe the details of the GMRES implementation in the design of our numerical
methods.

The outline of the paper is as follows. First, we present the 2D fluid equations in the mapped
coordinates. Then, we describe the numerical discretizations for the temporal and spatial derivatives,
followed by a detailed discussion of the GMRES iterations. Finally, we present the numerical results
in both the validation of the accuracy of our numerical methods and the study of viscous effects
on the motion of standing waves.

2. MAPPED EQUATIONS

Let us denote the spatial coordinates by (x, z), the temporal coordinate by t , the velocity components
by (u, w) and the pressure by p. In addition, let the physical parameters �, �, �, g and � be the
density, the dynamic viscosity, kinematic viscosity, gravity and the surface tension coefficient,
respectively.
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COMPUTATION OF 2D NAVIER–STOKES EQUATIONS 335

The equations of motion, in each of the two fluids, are given by the standard Navier–Stokes
equations [17]

�ut + �uux + �wuz = −Px + �(uxx + uzz) (4)

�wt + �uwx + �wwz =−Pz + �(wxx + wzz) (5)

where P is the hydrodynamic pressure which includes the gravity, P = p + �gz. The incom-
pressibility condition is

ux + wz = 0 (6)

Equations (4)–(6) hold in both the upper and lower fluids. Their solutions are connected through
the interfacial conditions. Let us represent the interface in the form

(x, z) = (x, h(x, t)) (7)

Then h is determined by the kinematic condition

ht + u(I )hx = w(I ) (8)

where u(I ), w(I ) are the velocity components at the interface. Continuity of the velocity at the
interface gives

u(1) = u(2) = u(I ), w(1) = w(2) = w(I ) (9)

where the superscripts (1), (2) distinguish the upper and lower domains. Moreover, we have two
stress conditions, or dynamical interfacial conditions

(h2x − 1)[�(1)(u(1)
z + w(1)

x ) − �(2)(u(2)
z + w(2)

x )]

+ 2hx [�(1)(u(1)
x − w(1)

z ) − �(2)(u(2)
x − w(2)

z )] = 0 (10)

(P(1) − P(2)) − gh(�(1) − �(2)) − 2[�(1)w(1)
z − �(2)w(2)

z ]

+ hx [�(1)(u(1)
z + w(1)

x ) − �(2)(u(2)
z + w(2)

x )] − �� = 0 (11)

where � is the mean curvature of the interface

�= hxx
(1 + h2x )

3/2
(12)

Solutions are assumed to be smooth and 2�-periodic in the horizontal direction, and decay away
from the interface in the vertical direction.

In order to capture the evolving interface with high resolution, we introduce the new, logical
coordinates (X, Z , �) through the mapping

x = X (13)

z = F(X, Z , �) (14)

t = � (15)
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where

F(X, Z , �)
�=
{
Z + h(X, �) exp(−�Z), Z�0

Z + h(X, �) exp(�Z), Z�0
(16)

where �>0 is a constant. Clearly, when Z = 0, z = h(x, t) marks the location of the interface.
When far from the interface, Z is relaxing exponentially to z. The value of � can also be used to
adjust the grid spacing near the interface.

We define

G0 = F�

FZ
, G1 = FX

FZ
, G3 = 1

FZ

g2 = (G1)
2 + (G3)

2, g3 =−2G1, g4 =G1
�G1

�Z
+ G3

�G3

�Z
− �G1

�X

(17)

Then we can write the Laplacian in new variables as

L
�= �2

�x2
+ �2

�z2
= �2

�X2
+ g2

�2

�Z2
+ g3

�2

�X�Z
+ g4

�
�Z

(18)

Furthermore, we introduce a new variable q by

q = uZ (19)

Then the original equations (4)–(6) become

u� − G0q + u(uX − G1q) + wG3q =−1

�
PX + 1

�
G1PZ + �L{u} (20)

w� − G0wZ + u(wX − G1wZ ) + wG3wZ =−1

�
G3PZ + �L{w} (21)

uX − G1q + G3wZ = 0 (22)

where

L{u} = uXX + g2qZ + g3qX + g4q (23)

and

L{w} = wXX + g2wZ Z + g3wX Z + g4wZ

= wXX − 1

G3
[g2(qX − (G1)Zq) + g3(uXX − (G1)Xq − G1qX )]

−
[

1

G3
(g2(G3)Z + g3(G3)X ) − g4

]
wZ + G1

G3
g2qZ (24)
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In deriving (24), we have used the equalities

wX Z =− 1

G3
[uXX − (G1)Xq − G1qX + (G3)XwZ ] (25)

wZ Z = − 1

G3
[qX − (G1)Zq − G1qZ + (G3)ZwZ ] (26)

which can be obtained by differentiating (22) for X and Z , respectively.
Similarly, the stress conditions (10) and (11) are transformed to

�(1)(G(1)
3 q(1) + w

(1)
X ) − �(2)(G(2)

3 q(2) + w
(2)
X ) +

(
4hX

h2X − 1
+ G(1)

1

G(1)
3

)
�(1)(u(1)

X − G(1)
1 q(1))

−
(

4hX

h2X − 1
+ G(2)

1

G(2)
3

)
�(2)(u(2)

X − G(2)
1 q(2)) = 0 (27)

(P(1) − P(2)) +
(
2 − 4h2X

h2X − 1

)
[�(1)(u(1)

X − G(1)
1 q(1)) − �(2)(u(2)

X − G(2)
1 q(2))]

− gh(�(1) − �(2)) − ��= 0 (28)

There are no changes to the other two interfacial conditions (9). Now all the derivatives with respect
to Z are first-order in the governing equations (19)–(22) as well as the interfacial conditions (27)
and (28). This property is important in the design of our numerical methods.

3. NUMERICAL ALGORITHM

Based on the mapped equations, we develop our numerical algorithm as follows: the Crank–
Nicolson method [18] is applied to the diffusion terms and the Adams–Bashforth method [19]
to the advection terms to advance the solution in time. The discrete Fourier transform [20] is
applied along the horizontal direction, X , which is assumed to possess periodicity. Then we obtain
a first-order ordinary differential equation (ODE) system with respect to Z , the vertical coordinate.
The trapezoidal rule is applied to this ODE system which results in a linear system of algebraic
equations, where the coefficient matrix is large and has variable entries. We will use the GMRES
method [14–16] to solve the linear system at each time step.

3.1. Temporal and spatial discretizations

Let us consider the details of the approximation in time. Denote the numerical solution at the nth
time step by

(un, qn, wn, Pn, hn)
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Suppose we know the numerical solution at the time steps n − 1 and n, and we want to advance
the solution to the next time step n + 1. First, we update the interface h by applying the Adams–
Bashforth method to Equation (8)

hn+1 − hn

��
= 3

2
(w(I ) − u(I )hX )n − 1

2
(w(I ) − u(I )hX )n−1 (29)

Once hn+1 is known, the mapping (13)–(15) is evaluated and the associated coefficients
Gi (i = 0, 1, 3), gi (i = 2, 3, 4) are readily calculated at the time step n + 1. Then, by using the
Crank–Nicolson method for the linear terms and the Adam–Bashforth method for the non-linear
terms in Equations (20) and (21), we obtain

un+1 − un

��
− 1

2
[(G0q)n+1 + (G0q)n]

+ 3

2
[u(uX − G1q) + wG3q]n − 1

2
[u(uX − G1q) + wG3q]n−1

= 1

2

[
−1

�
PX + 1

�
G1PZ + �L{u}

]n+1

+ 1

2

[
−1

�
PX + 1

�
G1PZ + �L{u}

]n
(30)

wn+1 − wn

��
− 1

2
[(G0wZ )n+1 + (G0wZ )n]

+ 3

2
[u(wX − G1wZ ) + wG3wZ ]n − 1

2
[u(wX − G1wZ ) + wG3wZ ]n−1

= 1

2

[
−1

�
G3PZ + �L{w}

]n+1

+ 1

2

[
−1

�
G3PZ + �L{w}

]n
(31)

Equations (19) and (22) are evaluated at the time step n + 1. By substituting (23) and (24) into
(30) and (31) and rearranging terms, we obtain

un+1
Z = qn+1 (32)

1

2�
Gn+1

1 Pn+1
Z + �

2
gn+1
2 qn+1

Z =Un+1 + E (33)

Gn+1
3 wn+1

Z = −un+1
X + Gn+1

1 qn+1 (34)

− 1

2�
Gn+1

3 Pn+1
Z +

[
1

2
G0 + �

2
g4 − �

2

1

G3
(g2(G3)Z + g3(G3)X )

]n+1

wn+1
Z

+ �

2

(
G1

G3
g2

)n+1

qn+1
Z = V n+1 + F (35)
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where

Un+1 = un+1

��
− 1

2
(G0q)n+1 − 1

2

[
−1

�
PX + �(uXX + g3qX + g4q)

]n+1

(36)

V n+1 = wn+1

��
− �

2

{
wXX − 1

G3
[g2(qX − (G1)Zq) + g3(uXX − (G1)Xq − G1qX )]

}n+1

(37)

and where E, F denote the explicit terms

E = − un

��
− 1

2
(G0 q)n

+ 3

2
[u(uX − G1q) + wG3q]n − 1

2
[u(uX − G1q) + wG3q]n−1

− 1

2

[
−1

�
PX + 1

�
G1PZ + �(uXX + g2qZ + g3qX + g4q)

]n
(38)

F = −wn

��
− 1

2
(G0 wZ )n

+ 3

2
[u(wX − G1wZ ) + wG3wZ ]n − 1

2
[u(wX − G1wZ ) + wG3wZ ]n−1

− 1

2

{
−1

�
G3PZ + �

[
wXX − 1

G3
[g2(qX − (G1)Zq) + g3(uXX − (G1)Xq

− G1qX )] −
[

1

G3
(g2(G3)Z + g3(G3)X ) − g4

]
wZ + G1

G3
g2qZ

]}n
(39)

Now that Equations (32)–(35) involve only first-order derivatives terms with respect to Z , we
apply the trapezoidal rule in Z to obtain

un+1
j+1 − un+1

j

�Z
− 1

2
(qn+1

j+1 + qn+1
j ) = 0 (40)

1

2�
(Gn+1

1 ) j+1/2
Pn+1
j+1 − Pn+1

j

�Z
+ �

2
(gn+1

2 ) j+1/2
qn+1
j+1 − qn+1

j

�Z

− (Un+1) j+1 + (Un+1) j

2
= E j+1 + E j

2
(41)

(Gn+1
3 ) j+1/2

wn+1
j+1 − wn+1

j

�Z
+ 1

2
[(un+1

X ) j+1 + (un+1
X ) j ]

−1

2
[(Gn+1

1 qn+1) j+1 + (Gn+1
1 qn+1) j ] = 0 (42)
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− 1

2�
(Gn+1

3 ) j+1/2
Pn+1
j+1 − Pn+1

j

�Z
+ �

2

(
G1

G3
g2

)n+1

j+1/2

qn+1
j+1 − qn+1

j

�Z

+
[
1

2
G0 + �

2
g4 − �

2

1

G3
(g2(G3)Z + g3(G3)X )

]n+1

j+1/2

wn+1
j+1 − wn+1

j

�Z

− (V n+1) j+1 + (V n+1) j

2
= Fj+1 + Fj

2
(43)

where the subscripts j , j + 1 refer to the j th and ( j + 1)th grid points in the vertical direction,
while the j + 1/2 refers to the average over the grid points j and j + 1. We note that all the terms
on the left-hand sides of the above equations are evaluated at t = (n + 1)�t with the superscript
n + 1 and all the terms on the right-hand sides are evaluated at previous times with superscripts n
or n − 1. We have yet to perform a discretization in the X direction, where the Fourier transform
will be used to achieve spectral accuracy. Since the coefficients in the above equations, such as
G0, G1, G3, g2, g3, g4, all depend on X , direct application of the discrete Fourier transform to
any product with these coefficients will require the convolution rule and make the results far too
complicated. Fortunately, the GMRES method does not require the explicit structure of the iteration
matrix [16]. This enables us to apply the pseudo-spectral approach [20] to Equations (40)–(43) to
obtain a linear algebraic system for each Fourier mode k

AkYk = Sk (44)

where the unknown, Yk , is composed of the kth Fourier coefficients of u, q , w and P at all the
vertical positions, and where the right-hand side vector Sk comes from the kth Fourier coefficients
of the right-hand sides in Equations (40)–(43).

3.2. The GMRES iterations

We use the GMRES method to solve Equation (44). The main parts in performing a GMRES
iteration are as follows:

(1) Calculate the right-hand side vector Sk , which we have discussed in detail.
(2) Make an initial guess for the solutions.
(3) Apply the preconditioner.
(4) Use the pseudo-spectral approach to perform the matrix–vector multiplication.

It is relatively easy to perform the matrix–vector multiplication, say AkỸ . This is achieved by
substituting a vector Ỹ into the left-hand sides of Equations (40)–(43) and applying the pseudo-
spectral approach. As a result, we obtain the right-hand sides corresponding to that vector Ỹ and
they give exactly AkỸ . Note that the interfacial conditions (9), (27) and (28) are also included in
the calculation with the pseudo-spectral approach. These conditions are evaluated at t = (n+ 1)�t
and Z = 0. That means they are treated implicitly.

Now we write out the details for making the initial guess. Let us go back to system (32)–(35).
We linearize all the expressions evaluated at t = (n + 1)�t (i.e. with superscripts n + 1) so that
the coefficients are approximated by

G0 = 0, G1 = 0, G3 = 1, g2 = 1, g3 = 0, g4 = 0 (45)
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We are led to an approximate system

un+1
Z = qn+1 (46)

�

2
qn+1
Z = un+1

��
+ 1

2�
Pn+1
X − �

2
un+1
XX + E (47)

wn+1
Z =−un+1

X (48)

− 1

2�
Pn+1
Z = wn+1

��
+ �

2
qn+1
X − �

2
wn+1

XX + F (49)

Then we perform the Fourier transform in X on the above Equations (46)–(49), which yields the
following ODE system for each Fourier mode k

d

dZ
Yk = BkYk + Rk (50)

where

Bk
�=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

1

���
(2 + �k2��) 0 0

1

��
ik

−ik 0 0 0

0 −��ik − �

��
(2 + �k2��) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(51)

and

Yk
�=

⎛⎜⎜⎜⎜⎜⎜⎝

un+1
k

qn+1
k

wn+1
k

Pn+1
k

⎞⎟⎟⎟⎟⎟⎟⎠ , Rk
�=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

2

�
Ek

0

−2�Fk

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(52)

As before, the subscript k refers to the kth Fourier coefficient of the corresponding physical
variable.

We also linearize the interfacial conditions (9), (27) and (28) to obtain

u(1) − u(2) = 0 (53)

�(1)(q(1) + w
(1)
X ) − �(2)(q(2) + w

(2)
X ) = 0 (54)

w(1) − w(2) = 0 (55)

(P(1) − P(2)) + 2(�(1)u(1)
X − �(2)u(2)

X ) = gh(�(1) − �(2)) + �hXX (56)
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After the Fourier transform is applied, the above equations can be written as

I (1)
k Y (1)

k − I (2)
k Y (2)

k = rk (57)

where

Ik
�=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0

0 � ik� 0

0 0 1 0

2ik� 0 0 1

⎤⎥⎥⎥⎥⎥⎦ , rk
�=

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

0

(g(�(1) − �(2)) − k2�)hk

⎞⎟⎟⎟⎟⎟⎟⎠ (58)

The ODE system (50) has to be solved subject to the interfacial conditions (57). We observe
that the matrix Bk in (51) has four distinct eigenvalues

	1 = k, 	2 =−k, 	3 =
√
k2 + 2

���
, 	4 = −

√
k2 + 2

���
(59)

We can use their associated eigenvectors to diagonalize the ODE system (50). The diagonalized
system is reduced to four scalar linear equations and its solutions can be easily constructed. We
then transform them back to obtain the solutions for the original system (50). These solutions Yk ,
obtained for all the vertical points, will serve as the initial guess for GMRES.

Fortunately, the preconditioner works in the same way as making the initial guess, except that
the right-hand side vectors Rk in (50) and rk in (57) are different. They are the residuals in the
iteration and are provided by GMRES. We simply substitute them into (50) and (57) and apply
the procedure described above to construct the solutions.

In our numerical simulation, we set the stopping criterion of the iterations to be 
<10−9, where 

is the normwise backward error [16, 21] and is defined to be the ratio of the L2-norm of the residue
and that of the approximate solution. We found the GMRES typically requires 6–10 iterations at
each time step to achieve convergence.

4. NUMERICAL RESULTS

4.1. Numerical verification of accuracy

While there is no doubt about the spectral accuracy in the X -direction where the discrete Fourier
transform is applied to smooth functions, the order of accuracy for the time marching and the
discretization in the Z -direction is to be justified by numerical experiments. Two examples serve
for that purpose. These tests are performed on a 2.4 GHz Xeon dual-processor workstation.

In the first example, we consider the incompressible Navier–Stokes equations (4)–(6) with the
exact solutions

u = t sin(2x)e−2z

w = t cos(2x)e−2z

P = �

2
(cos(2x)e−2z − t2e−4z)

(60)
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which are exponentially decaying in the vertical direction and periodic in the horizontal direction.
The spatial domain is defined as

{(x, z)|0�x�2�, h(x, t)�z�4} (61)

where h, the bottom, is artificially set as

h(x, t) = 0.2 sin(x − t) (62)

Only one fluid is concerned and there is actually no interface. Nevertheless, when applying our
methods the wavy boundary h(x, t) serves as the ‘interface’, on which the mapping (13)–(15) is
readily formed (for Z�0 only) and all the parts in our approach are readily applied. That means
the mapped fluid equations and their numerical approximations will be thoroughly tested. On the
other hand, the numerical treatment of the interfacial conditions will not be tested. The initial and
the boundary values for u, w, P are taken from the exact solution (60).

We perform the computation for �=1, �=0.313 (corresponding to a Reynolds number Re
.=100)

and run the codes until t = 0.2. We use 32 points in the X -direction so that the errors associated
with �X is much smaller than those associated with �t and �Z . Let N be the number of time
steps and J the number of points in the Z -direction. We keep doubling N and J to check the error
pattern. The results are presented in Table I, where E(u, N , J ) denotes the L2-norm of the errors
for u with the resolution of N time steps and J points in the Z -direction, and where R(u, N , J )

denotes the quantity √
E(u, N/2, J/2)

E(u, N , J )

Similar notations hold for E(w, N , J ), R(w, N , J ) and E(P, N , J ), R(P, N , J ). The results
clearly indicate the second-order convergence in both �t and �Z .

Table I. Numerical errors for the first test case, where the
non-linear motion (60) in a one-fluid domain is calculated.

E(u, N , J ) E(w, N , J ) E(P, N , J )
N J (R(u, N , J )) (R(w, N , J )) (R(P, N , J ))

80 80
1.749× 10−5

(—)

8.921× 10−6

(—)

5.487× 10−5

(—)

160 160
4.555× 10−6

(1.96)

2.130× 10−6

(2.05)

1.302× 10−5

(2.05)

320 320
1.143× 10−6

(2.00)

5.554× 10−7

(1.96)

3.403× 10−6

(1.96)

N and J are the numbers of time steps and spatial points, respectively.
E(· , N , J ) denotes the L2-norm of the errors and R(· , N , J ) indicates the
order of convergence.
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In the second example, we test a two-fluid case with an interface. Due to the presence of
the non-linear interfacial conditions (9)–(11), an analytical form of solutions is generally not
available. Instead, we consider the linearized problem, where the exact solutions are known, and
we numerically calculate such solutions. Consequently, the numerical treatment of the interfacial
conditions will be tested at least at the linear level.

Solutions for the linear motion of interfacial flows are available in [22] and most recently in
[23]. They take the form of ⎛⎜⎜⎜⎜⎜⎝

uk

wk

Pk

hk

⎞⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎝
u0k

w0
k

P0
k

h0k

⎞⎟⎟⎟⎟⎟⎟⎠ e�t (63)

where the subscript k specifies the kth Fourier coefficient and the superscript 0 indicates the initial
state. The value of � is found through a non-linear dispersion relation [22, 23] and Newton’s
method is applied to solve for � numerically. Let �(1) = √

� + �(1)k2, �(2) = √
� + �(2)k2. The

initial values {u0k, w0
k , P

0
k , h0k} are determined as follows.

In the upper domain

w0
k = A exp(−|k|z) + B exp

(
− �(1)

√
�(1)

z

)

u0k = − i|k|
k

A exp(−|k|z) − i

k

�(1)

√
�(1)

B exp

(
− �(1)

√
�(1)

z

)

P0
k = �(1)�(k)

|k| A exp(−|k|z)

(64)

In the lower domain

w0
k =C exp(|k|z) + D exp

(
�(2)

√
�(2)

z

)

u0k = i|k|
k

C exp(|k|z) + i

k

�(2)

√
�(2)

D exp

(
�(2)

√
�(2)

z

)

P0
k = −�(2)�(k)

|k| C exp(|k|z)

(65)

For the interface

h0k = a

2
(66)

where a is a small real constant that specifies the amplitude. The constants A, B,C, D are given
in [23].
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In our test we pick k = 1, a = 0.4 and consider the air–water case with �(1) = 0.0012, �(1) = 1.8
× 10−4, �(2) = 1.0, �(2) = 1.1× 10−2 (corresponding to a Reynolds numbers Re

.= 2846). The
domain of computation, with air above and water below, is chosen to be a rectangle

{(x, z)|0�x�2�, −H�z�H} (67)

with H = 4. The initial conditions and the boundary values at the two ends (z = ± H) are taken
from the linear solutions. We advance the solution until t = 0.2, using fixed 32 points in the X -
direction, 2J points in the Z -direction and N steps in time. The results are shown in Table II,
where the quantities E and R are defined as before. We see bigger numerical errors than those
in the first test case. The reason is that in the present case, the viscosities are much smaller (i.e.
the Reynolds numbers are much bigger), so that higher resolution is required to achieve good
accuracy. Nevertheless, the results in the table clearly indicate the second-order convergence of
the numerical methods. In particular, the interface profile, h, is captured with full second-order
accuracy.

Further evidence of the accuracy and reliability of the numerical algorithm is provided in next
section for the simulation of viscous effects on the motion of standing waves.

4.2. Numerical simulation of viscous standing waves

Two-dimensional standing waves in inviscid fluids are periodic in both time and space. They are
stationary in the horizontal direction but make periodic oscillations between crest and trough in the
vertical direction. The study of inviscid standing waves is an attractive topic in mathematical fluid
mechanics and many efforts have been devoted to it. Rayleigh [24] was the first to investigate deep-
water standing waves by calculating a perturbation series to the third order with the wave amplitude
being the small parameter. Penney and Price [25] carried the perturbation series expansion to the
fifth order. They found that the free surface is never perfectly flat during the period of the wave
motion. By using digital computers to perform the coefficient arithmetic, Schwartz and Whitney
[26] were able to compute the expansion to extremely high orders. In addition, Rottman [27]

Table II. Results for the second test case, where the linearized interfacial
motion (63) between air and water is calculated.

E(u, N , J ) E(w, N , J ) E(P, N , J ) E(h, N , J )
N J (R(u, N , J )) (R(w, N , J )) (R(P, N , J )) (R(h, N , J ))

80 80
2.747× 10−2

(—)

1.821× 10−2

(—)

3.328× 10−1

(—)

1.410× 10−3

(—)

160 160
5.784× 10−3

(2.18)

4.372× 10−3

(2.04)

8.001× 10−2

(2.04)

3.250× 10−4

(2.08)

320 320
1.293× 10−3

(2.11)

1.045× 10−3

(2.05)

2.104× 10−2

(1.95)

7.597× 10−5

(2.06)

N and J are the numbers of time steps and spatial points, respectively. E(· , N , J ) denotes
the L2-norm of the errors and R(· , N , J ) indicates the order of convergence.
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computed high order series solutions for standing waves between two fluids with different but
uniform densities. Further references on this topic can be found in the review article by Schwartz
and Fenton [28].

On the other hand, relatively few work, in general, has ever been published for the viscous ef-
fects on the motion of finite amplitude waves. In the classical fluid dynamics book by Lamb [29],
viscous theory was developed for linear wave motion at a one-fluid free surface. Chandrasekhar
[22] extended the linear viscous theory to interfacial waves between two fluids. A recent paper
by Yang and Tryggvason [30] investigated the effects of the viscosity on the motion of weakly
non-linear progressive/travelling waves. They found, in the case of low Reynolds numbers, that
wave profiles closely follow the linear prediction. A similar result was presented by Sussman in
[9] where a level set method was used for the numerical simulation of waves.

In this section, we apply our numerical method to study the non-linear problem of standing
wave motions in the presence of viscosity, by solving the fully non-linear Navier–Stokes equations
with interfacial conditions.

We note that an inviscid standing wave can be expanded in a Fourier cosine series

h(x, t) =
∞∑
k=1

Ak(A, t) cos kx (68)

where A is a free parameter and where each coefficient Ak is dependent on A and t . The expressions
of the first few coefficients are given in [25], for example. In particular, when the wave is at its
peak, the first five coefficients are given by

A1 = A + 1
32 A

3 − 47
1344 A

5

A2 = 1
2 A

2 − 79
672 A

4

A3 = 3
8 A

3 − 12563
59136 A

5

A4 = 1
3 A

4

A5 = 295
768 A

5

(69)

At the initial moment, the wave is at its peak and the fluid is at rest, i.e. the velocities u and w

are zero everywhere.
Since all fluids in nature have some viscosity, it is interesting to know what happens to a

standing wave in the presence of viscosity. In order to numerically study this problem, we perform
the simulation in the following way. We consider a system of two viscous fluids and use the
expansion formula (69) for initial conditions. The numerical solution is recorded from time to
time, in particular, at every period T when the wave attains its peak, and compared with the
inviscid solution. We neglect the surface tension in this study.

There are two issues which we have to address for using such initial conditions. First, formula
(69) is for a one-fluid system with the density of the upper fluid being zero, while our computation
is for a two-fluid system with a non-zero upper density. According to [22, 30], a small upper
density will contribute extra terms with a leading order �(1)/�(2)

√
Re. In our numerical simulation

the density ratio �(1)/�(2) is close to 10−3 and the Reynolds number Re is either about 3000
or 300. Hence, the error due to a non-zero upper density is negligible since it is at most in
the magnitude of 10−5. Second, formula (69) corresponds to inviscid solutions. As soon as the
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computation is started in the presence of viscosity, boundary layers form near the interface to
ensure the velocities become continuous and the stresses become important in the balance of
pressure across the interface. Numerically we found the effect of this spontaneous adjustment is
very small and it only affects the fifth or sixth digits of the numerical results.

Figure 1 shows the wave profiles at t = 0, with A= 0.1, and t = 20T , with two choices
of viscosities: (1) The typical air–water case with �(1) = 0.0012, �(1) = 1.8× 10−4, �(2) = 1.0,
�(2) = 1.1× 10−2. The Reynolds number Re

.= 2846. (2) An artificial case where the densities
are the same with, but the viscosities are 10 times bigger than, the air–water case. Specifically,
�(1) = 0.0012, �(1) = 1.8× 10−3, �(2) = 1.0, �(2) = 1.1× 10−1. The Reynolds number Re

.= 285.
One can clearly see the decay of the wave amplitude. In the case of bigger viscosities
(Figure 1(b)) the wave decays faster than in the air–water case (Figure 1(a)).

Before we explore more details of the viscous effects, we provide one more validation of our
numerical methods by checking the accuracy in the calculation of the non-linear interface, h. This
complements the second test for the numerical treatment of the full interfacial conditions. Due to
the presence of viscosity, an exact solution of the interface profile is not known. Hence, we use
the Richardson extrapolation [19] to check the order of accuracy. Let ĥ(N , J ) be the numerical
solution of h with N time steps and J points in the vertical direction. We define

e(N , J ) =‖ĥ(N/2, J/2) − ĥ(N , J )‖2, r(N , J ) =
√
e(N/2, J/2)

e(N , J )

where ‖ · ‖2 denotes the L2-norm taken at all the grid points in the horizontal direction. In our
numerical test, we consider a system of air (upper fluid) and water (lower fluid) in a rectangular
domain as defined in (67). We pick H = 16, far bigger than the wave amplitude to ensure the far
field boundaries have no impacts on the interfacial motion. Sufficiently many points are used in the
horizontal direction so that the error associated with �X can be neglected. We advance the numeri-
cal solution until after six periods for each choice of N and J . The results are presented in Table III.

0 1 2 3 4 5 6
X
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-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

h

-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

h

t = 0
t = 20T

0 1 2 3 4 5 6
X

t = 0
t = 20T

(a) (b)

Figure 1. The profiles of standing waves in the presence of viscosity. The profiles at t = 0 are
from the analytic expansion form with A= 0.1, and those at t = 20T , where T is one wave
period, are obtained from the numerical simulation: (a) in the air–water case: �(1) = 0.0012,
�(1) = 1.8× 10−4, �(2) = 1.0, �(2) = 1.1× 10−2 and (b) with bigger viscosities: �(1) = 0.0012,

�(1) = 1.8× 10−3, �(2) = 1.0, �(2) = 1.1× 10−1.
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Table III. Convergence study for the numerical calculation of the non-linear
interface from a viscous standing wave between air and water.

N J e(N , J ) r(N , J )

160 160 — —
320 320 1.495× 10−3 —
640 640 4.212× 10−4 1.88

1280 1280 8.860× 10−5 2.18

N and J are the numbers of time steps and spatial points, respectively. e(N , J )
denotes the L2-norm of the difference between two consecutive numerical runs
and r(N , J ) indicates the order of convergence.

The values of r indicate, again, the second-order accuracy in both t and Z . The results, together
with those from the first two tests, give a solid validation of our numerical methods.

It is worthwhile to compare the accuracy of our numerical method with that of level set methods,
which have been increasingly popular in the calculation of fluid interface problems. The level set
algorithm, though robust and applicable in a wide range of problems, cannot in general achieve
second-order accuracy for problems involving moving interfaces between two incompressible fluids
[9]. In a very recent paper by Sussman et al. [31], a coupled level set and volume of fluid method
was proposed which achieves second-order accuracy in the limit of zero upper density. This is a
significant improvement of the level set algorithm in the calculation of two-phase flows. However,
this method is of full second order only when the upper fluid vanishes. In the case of air and water
with a density ratio 1 to 1000, the order of 1.6 was reported for the simulation of standing waves
and only first order measured in the simulation of travelling waves with wind [31]. On the other
hand, the main advantage of level set methods over our present method lies in its ability to easily
handle topological changes of interfaces, though change in topology is not a concern in our study
of the viscous effects on wave motions.

Now we discuss the main results of the numerical simulation of standing waves in the presence of
viscosity. We have seen that the viscous dissipation damp the wave amplitude. It is then interesting
to ask: in what pattern does the viscosity damp the wave amplitude? In particular, does the viscosity
break a standing wave of the expansion form (68)? In order to answer the question, we study the
decay pattern of each Fourier mode Ak in detail. For the inviscid case, the expansion formulas in
(69) suggest one way to view the family of standing waves is to consider the curves Ak versus
A1, or equivalently, Ak(A1). Then the effects of viscosity can be studied by viewing the deviation
of the numerical results from these curves.

We draw the curves by using (69) for the amplitude of the modes |A2| versus |A1|, |A3| versus
|A1|, etc. and refer to these curves as inviscid solutions. On the other hand, we have the numerical
results for the viscous solutions which give the time evolution for the amplitude of each mode.
We can plot these amplitudes in the same way as |A2| versus |A1|, |A3| versus |A1|, etc. In
Figures 2–4 we compare the viscous solutions, obtained numerically, to the analytic inviscid
solutions with two choices of the amplitude parameter, A= 0.1 and 0.2. We again consider the
two choices of viscosities: one in the air–water case and one with 10 times bigger viscosities.

The numerical solutions are plotted from t = 0 and for every period T , until t = 20T . In all
these figures, we observe that the numerical viscous solutions (the squares) closely follow the
analytical inviscid solutions (the curves). These results suggest that viscous effects simply reduce
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Figure 2. Comparison between the inviscid solution, obtained analytically, and the viscous solu-
tion, obtained numerically, of the standing wave with �(1) = 0.0012, �(1) = 1.8× 10−4, �(2) = 1.0,
�(2) = 1.1× 10−2 and A= 0.1. The numerical solution is displayed from t = 0 and for every period,

T , until t = 20T : (a) modes |A2| versus |A1| and (b) modes |A3| versus |A1|.
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Figure 3. Comparison between the inviscid solution, obtained analytically, and the viscous solu-
tion, obtained numerically, of the standing wave with �(1) = 0.0012, �(1) = 1.8× 10−4, �(2) = 1.0,
�(2) = 1.1× 10−2 and A= 0.2. The numerical solution is displayed from t = 0 and for every period,

T , until t = 20T : (a) modes |A2| versus |A1| and (b) modes |A3| versus |A1|.

the magnitude (peak value) of a standing wave while allowing it to remain a member of the family.
In other words, the viscous dissipation seems to be equivalent to the damping of the amplitude
parameter A in expansion (68). Without viscosity, A is fixed. With viscosity it is reduced while
maintaining the ratio of the amplitudes between different modes.

One more evidence is provided in Figure 5, where we match the numerical solutions of viscous
standing waves at t = 20T by using some analytic solutions from inviscid standing waves. The
air–water case is considered and two choices for the initial wave amplitude are made: A= 0.1 and
0.2. From the numerical solutions we are able to obtain the magnitude of the mode A1 at t = 20T
in each case. From A1 we can solve for A by using the first equation in (69). We then substitute
A into the expansion (69) to obtain an inviscid solution. The numerical solutions and the inviscid
solutions are plotted for both cases in Figure 5 and we find excellent agreement between them.
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Figure 4. Comparison between the inviscid solution, obtained analytically, and the viscous solu-
tion, obtained numerically, of the standing wave with �(1) = 0.0012, �(1) = 1.8× 10−3, �(2) = 1.0,
�(2) = 1.1× 10−1 and A= 0.1. The numerical solution is displayed from t = 0 and for every period,

T , until t = 20T : (a) modes |A2| versus |A1| and (b) modes |A3| versus |A1|.
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Figure 5. Matching the inviscid solution, obtained analytically, and the viscous solution, obtained numeri-
cally, for the profiles of standing waves with �(1) = 0.0012, �(1) = 1.8× 10−4, �(2) = 1.0, �(2) = 1.1× 10−2:
(a) the numerical solution starts from A= 0.1 and is plotted at t = 20T , while the inviscid solution is
plotted with A

.= 0.08916 and (b) the numerical solution starts from A= 0.2 and is plotted at t = 20T ,
while the inviscid solution is plotted with A

.= 0.17972.

Finally, we mention again that the surface tension is not included in our numerical study of
standing waves. In the presence of capillary effects, waves will typically develop sharp corners at
the top and bottom of the leading edge, which clearly breaks the pattern of standing waves. See
[30, 32], for example, for detailed discussion of capillary effects on wave motion.

5. CONCLUSIONS

We have designed an algorithm which enables us to perform direct numerical simulation of two-
dimensional Navier–Stokes equations with moving interfaces. The GMRES iterations play a crucial
role in this algorithm and make it possible to efficiently solve the large linear system resulting from
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the temporal and spatial discretizations. The methods achieve spectral accuracy in the horizontal
direction, and second-order accuracy in both the time marching and the vertical direction. With
this numerical algorithm, standing waves can be followed sufficiently in time to study the viscous
effects on wave motion. Our numerical results suggest, at least for standing waves with small
or moderate amplitude, that viscous dissipation appears to be equivalent to the damping of the
parameter A in the inviscid expansion form. This observation will be used to derive a formal
asymptotic theory for further study of the viscous effects on standing waves.
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